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Abstract
Substantial controversy exists regarding the presence and significance of anatomical abnormalities in autism spectrum
disorders (ASD). The release of the Autism Brain Imaging Data Exchange (∼1000 participants, age 6–65 years) offers an
unprecedented opportunity to conduct large-scale comparisons of anatomical MRI scans across groups and to resolve many of
the outstanding questions. Comprehensive univariate analyses using volumetric, thickness, and surface areameasures of over
180 anatomically defined brain areas, revealed significantly larger ventricular volumes, smaller corpus callosum volume
(central segment only), and several cortical areas with increased thickness in the ASD group. Previously reported anatomical
abnormalities in ASD including larger intracranial volumes, smaller cerebellar volumes, and larger amygdala volumeswere not
substantiated by the current study. In addition, multivariate classification analyses yielded modest decoding accuracies of
individuals’ group identity (<60%), suggesting that the examined anatomical measures are of limited diagnostic utility for ASD.
While anatomical abnormalities may be present in distinct subgroups of ASD individuals, the current findings show that many
previously reported anatomical measures are likely to be of low clinical and scientific significance for understanding ASD
neuropathology as a whole in individuals 6–35 years old.
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Introduction
Considerable effort has been devoted to the identification of
anatomical abnormalities in individuals with autism spectrum
disorder (ASD) (Courchesne et al. 2007; Amaral et al. 2008). In
the current study,we analyzed anatomical data acquired from in-
dividuals older than 6 years of age for whomMRI scans are avail-
able in the Autism Brain Imaging Data Exchange (ABIDE)
database. Previous studies of individuals in this age range have
reported that, in comparison to controls, ASD individuals exhibit
numerous abnormalities including larger gray matter (Lotspeich
et al. 2004; Hazlett et al. 2006; Ecker et al. 2013), white matter (Ha-
zlett et al. 2006), amygdala (Bellani et al. 2013a), and hippocam-
pus (Groen et al. 2010) volumes, smaller cerebellum (Scott et al.
2009; Fatemi et al. 2012) and corpus callosum (CC; Bellani et al.
2013b) volumes, and abnormal cortical thickness (Raznahan
et al. 2010; Wallace et al. 2010). These findings have been
interpreted as supporting evidence for different theories of
ASD including, for example, the “amygdala theory of autism”

(Baron-Cohen et al. 2000) and the “underconnectivity” theory of
ASD (Just et al. 2007). These findings, however, have not been
replicated consistently in the literature and heterogeneous
results across studies with small samples of participants have
demonstrated a critical need for analyzing larger cohorts
(Amaral et al. 2008).

More recent anatomical studies have also utilized multivari-
ate classification techniques to identify patterns of anatomical

measures that differ across ASD and control individuals instead

of focusing on just one measure at a time. These studies have

reported remarkable accuracies in decoding the group identity

of single subjects (above 85%) when utilizing measures of

cortical thickness, geometry, curvature, and/or surface area

(Ecker, Marquand et al. 2010; Jiao et al. 2010; Uddin et al. 2011),

thereby implicitly suggesting that anatomical measures may

have clinical diagnostic value for ASD. While these initial results

seem promising, it is important to note that previous studies

sampled data from only 20–30 subjects in each group and
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reported successful classification with entirely different sets of
anatomical measures. The lack of consistency across studies
raises critical questions regarding the generalizability and repro-
ducibility of findings to larger cohorts.

The release of theABIDE data exchange (DiMartino et al. 2014)
offers a unique opportunity to perform more definitive anatom-
ical comparisons by analyzing aggregated MRI data, collected in
20 different international studies, from ∼1000 ASD and control
participants, ages 6–65 years. This dataset, which is an order of
magnitude larger than any anatomical dataset published to
date, offers substantial statistical power and the ability to dissoci-
ate anatomical variability related to age, IQ, and scanning site
from true anatomical differences across control and autism
groups. As such, this dataset offers an unprecedented opportun-
ity to determine the existence (or lack thereof ) of anatomical
abnormalities in children, adolescents, and adults with ASD.

Materials and Methods
The data analyzed in the current studyare part of theABIDE data-
base (http://fcon_1000.projects.nitrc.org/indi/abide). All data are
fully anonymized as required by HIPAA regulations and all par-
ticipating sites received local Institutional Review Board approval
for acquisition of the contributed data.

Subjects

The ABIDE database contains aggregated MRI scans of 539 ASD
individuals and 573 typical controls aged 6–65 years who were
scanned as part of 20 international studies. We performed
analyses on 2 samples from the database.

Strict Sample
Herewe excluded ASD subjects older than 35 (21 subjects) and all
females (65 subjects) given their low preponderance. Individuals
without IQ scores (34 subjects), those with low-quality MRI scans
(26 subjects, see below), and those with gross anatomical
volumes that exceeded 3 standard deviations from the mean of
the site (8 ASD and 8 control subjects in total) were also excluded.
The remaining 401 ASD subjects werematched to controls within
the same site based on age (±5 years) and IQ (±10 points). ASD
subjects for whom there was no matched control were excluded.
Final analyses were performed with 295 ASD and 295 control
subjects (Table 1).

Relaxed Sample
Here we excluded subjects with low-quality MRI scans and equa-
ted the number of ASD and control subjects within each site by
selecting control subjects that were closest in age to the ASD sub-
jects. Left over subjects from sites with an unequal number of
ASD and control subjects were excluded. Final analyseswere per-
formed with 453 ASD and 453 control subjects (Supplementary
Table 1). In this sample subjects were NOTmatched with respect
to gender, IQ, or age.

MRI Scans

All MRI data were acquired using 3-Tesla scanners with T1

weighted scans (1 × 1 × 1-mm resolution). The specific scanning
parameters of each sample are available at http://fcon_1000.
projects.nitrc.org/indi/abide.

Brain Segmentation

Cortical reconstruction and volumetric segmentation was per-
formed with Freesurfer (http://surfer.nmr.mgh.harvard.edu/).
The technical details of these procedures are described else-
where (Fischl 2012). Briefly, this processing includes removal of
nonbrain tissue and segmentation of subcortical and cortical
gray and white matters based on image intensity. Low-quality
MRI scans where the segmentation procedures failed or showed
geometric inaccuracies were excluded (26 ASD subjects).

ROI Parcellation

Parcellation was also performed using Freesurfer. Individual
brains were registered to a spherical atlas which utilized individ-
ual cortical folding patterns to match brain geometry across sub-
jects. Each brain was then parcellated into 148 graymatter and 32
subcortical ROIs using the Destrieux anatomical atlas (Destrieux
et al. 2010). Finally, ROI labels were transformed back into each
subject’s native space to compute the volume of each ROI.

Cortical Thickness and Surface Area

Both measures were computed using Freesurfer by estimating
the gray/white matter boundary and the pial surface (Fischl and
Dale 2000). Cortical thickness was computed for each triangular
vertex as the distance from one surface to the other. The number
of vertices varied across subjects according to individual cortical
surface area. ROI thickness was computed by averaging the verti-
ces belonging to each ROI in each subject’s native anatomical
space. Cortical surface area was computed per ROI using 2D
flattened representation of the cortical surface.

Regressing Out Site Age and IQ

Whenperforming themixed-model analysis using group and site
as main factors and age and IQ as covariates, we found that site,
age, and IQ had significant effects onmost anatomical measures.
To eliminate differences due to these confounding factors we re-
gressed out the effects of site, age, and IQ from each of the ROIs
for each of the anatomicalmeasures separately. Thiswas done by
performing amultiple regression analysis of the anatomical data
(including both ASD and control subjects) with the 3 variables
(site, age, and IQ) and extracting the residuals. Since anatomical
measuresmay change in a linear (e.g., graymatter volume), expo-
nential (e.g., white matter volume), or quadratic (e.g., atrophy at
older ages) manner with age, we included a linear, an exponen-
tial, and a quadratic predictor for age in the multiple regression
analysis. This analysis was performed for each ROI separately.

Classification

We used linear and quadratic (nonlinear) discriminant analyses
implemented in MATLAB to classify ASD and control subjects
according to anatomical measures. Discriminant analysis is a
supervised multivariate classification method where each sub-
ject is represented by a vector in a high dimensional space de-
fined by the number of selected features (anatomical ROIs).
Training data were classified into 2 classes (ASD and controls)
by identifying a multidimensional hyperplane in the linear case
and a multidimensional quadratic surface in the nonlinear case
that optimally separates the 2 classes. The accuracy of the hyper-
plane/surfacewas tested by assessing its ability to separate inde-
pendent “testing data” that was not included in the “training
data” (see cross-validation below). Classification was applied
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separately to five different anatomical feature sets: all ROI
volumes (180 features), subcortical ROI volumes (32 features),
cortical ROI volumes (148 features), thicknesses (148 features),
and surface areas (148 features).

10-Fold Cross-validation

The data were randomly split into 10 even-sized subsets, which
included an even number of subjects from ASD and control
groups. Nine subsets (90% of the data) were used to train the clas-
sifier and the remaining subset (10%) was used to test classifier
accuracy by assessing the proportion of subjects that were accur-
ately decoded. This process was iterated 10 times such that each
of the subsets was used once for “testing” and the decoding
accuracies were averaged across iterations.

Leave-Two-Out Cross-validation

Here we used the same procedure as the “10-fold” validation but
left out 2 exemplars (one with ASD and one control) instead of
10% of the data from each group for “testing” and the number
of iterations equaled n/2.

Randomization Test

We used a randomization test to determine statistical signifi-
cance in the different analyses. In the univariate analyses, we
randomly shuffled the ASD and control labels across subjects
and computed the difference in the particular measure (e.g.,
intracranial volume) across groups. This process was repeated
10 000 times to generate 10 000 difference values that represented
a distribution of differences expected by chance (null distribu-
tion). For the true (un-shuffled) value to be considered significant,
it had to surpass the 2.5th or 97.5th percentile of the null distribu-
tion (i.e., the equivalent of a P < 0.05 value in a two-tailed t-test).
A separate randomization analysis was performed for each

anatomical measure. In the multivariate analyses, we similarly
shuffled the ASD and control labels and then performed identical
classification and cross-validation procedures to those described
above. This process was repeated 100 times to generate 100
decoding accuracy values that represented a distribution of
accuracies expected by chance (null distribution). A separate
randomization analysis was performed for each classification
analysis with each set of anatomical features. For the real decod-
ing accuracy to be considered statistically different from chance
levels, it had to exceed the 95th percentile of the relevant null
distribution.

Multiple Comparisons

We used false discovery rate (FDR) correction (Benjamini and
Hechtlinger 2014) to control for the multiple comparisons prob-
lem when assessing anatomical differences across multiple
ROIs (e.g., Fig. 2) . This correction ismore relaxed than the Bonfer-
roni method, andwe used it in order to increase the sensitivity of
the analyses so as not to miss any potential differences across
groups.

Results
While the ABIDE database contains data from ∼1000 individuals,
behavioral scores (i.e., IQ, ADOS, ADI) were not available for all
subjects and age and gender were not sufficiently matched with-
in all sites. We, therefore, decided to perform the majority of our
analyses with a subset of 590 participants (half controls) who
were selected using the following stringent criteria. Since 98%
of the subjects were under the age of 35 and 85% were male, we
selected only males 6–35 years old. An equal number of ASD
and control subjects were sampled from each site and each
ASD subject was matched with a control subject on IQ and age
within the site. This selection ensured that there were no major
group differences on multiple demographic, biographic, and

Table 1 Strict sample phenotypic information

Site Scanner n Age IQ ADOS

ASD TD ASD TD ASD TD ASD

Mean SD Mean SD Mean SD Mean SD Mean SD

CALTECH SIEMENS Trio 5 5 22.6 4.2 22.1 3.7 113 11.1 116 6.1 10.8 2.7
CMU SIEMENS Verio 8 8 24.9 4.1 25.8 4.7 110 11.6 109 6.1 13.0 3.2
KKI Philips Achieva 10 10 10.4 1.4 10.4 1.4 107 13.3 111 11.4 10.6 1.8
Leuven 1 Philips INTERA 12 12 20.4 1.9 22.7 2.6 110 12.5 113 10.5
Max Munich SIEMENS Verio 13 13 19.9 9.2 20.1 8.9 109 9.7 109 8.1 9.8 3.9
NYU SIEMENS Allegra 56 56 13.6 5.9 14.3 4.8 110 16.5 112 13.2 11.3 4.1
OHSU SIEMENS Trio 8 8 11.1 2.1 10.0 1.1 117 12.6 115 10.1 8.6 3.7
OLIN SIEMENS Allegra 13 13 16.2 3.0 17.4 3.4 114 16.2 114 17.1 14.2 3.7
PITT SIEMENS Allegra 18 18 18.3 6.0 17.4 5.3 109 13.7 110 9.4 12.8 3.0
SDSU GE MR750 8 8 14.6 1.7 14.3 1.3 113 9.5 113 7.5 10.6 4.1
Stanford GE Signa 9 9 9.5 1.6 9.4 1.3 113 13.1 114 11.7 11.9 3.8
Trinity Philips Achieva 22 22 16.7 3.0 16.4 3.1 111 13.3 111 12.4 10.6 2.9
UCLA 1 SIEMENS Trio 27 27 13.2 2.6 13.3 2.2 104 13.0 105 10.4 10.5 3.3
UCLA 2 SIEMENS Trio 5 5 12.3 1.9 12.2 1.1 105 9.4 108 8.8 13.5 3.1
UM 1 GE Signa 26 26 12.8 2.4 13.1 3.2 105 15.9 108 9.8
UM 2 GE Signa 11 11 14.6 1.6 15.6 1.7 114 13.0 112 9.1
USM SIEMENS Trio 30 30 21.5 5.7 21.1 5.9 107 13.9 110 10.3 12.9 2.7
Yale SIEMENS Trio 14 14 12.6 3.0 12.2 2.8 99 18.4 100 16.5

Number of subjects, mean and standard deviation of age, IQ scores, and ADOS scores (total communication and social scores from ADOS modules 3 and 4 only) are

presented for each site along with the type of MRI scanner used at the site. Note that ADOS testing was not performed at 4 of the sites (63 subjects with ASD).
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environmental variables that may have varied across inter-
national sites. In addition, we repeated the analyses with larger
sets of subjects while using more relaxed sampling criteria and
found equivalent results to those described below. To demon-
strate this, we present results from a larger sample containing
906 participants who were not matched with respect to age,
gender, or IQ (Supplementary Figs 6 and 7).

Intracranial Volume

To determine whether there were significant differences in
intracranial volumes across the ASD and control groups, we per-
formed a mixed-model analysis (MANCOVA) with 2 main factors
(group and site) and 2 covariates (age and IQ). This analysis
revealed significant differences across groups (P = 0.04) and sites
(P < 0.001), which co-varied significantly with age and IQ
(P < 0.002), and a significant interaction between site and group
(P = 0.02). Since the interaction between group and site was sig-
nificant, we performed an additional analysis per site and as-
sessed whether differences between groups were consistent
across sites (Fig. 1A). The results showed that significant differ-
ences across groups were found in only 2 of the 18 sites, which
contained only 26 of the 590 (4.4%) subjects. Removing these
sites from the analysis eliminated the significant difference
across groups and the significant interaction between group
and site (P > 0.1 for both) thereby demonstrating that initial
significance was driven by the small subset of subjects from
these 2 sites.

The results of the mixed-model analysis demonstrated that
intracranial volumes varied significantly across sites, ages, and
IQs. Since these are confounding factors in comparisons of

anatomy across control and ASD groups, we reanalyzed the
data after regressing out the variability associated with each fac-
tor. This normalization procedure eliminated mean volume dif-
ferences across sites, ages, and IQ levels, but did not affect the
differences between autism and control groups within each
site. Hence the 2 sites with significant intracranial volume differ-
ences across groups before normalization also exhibit significant
differences after normalization (Fig. 1D and Supplementary
Fig. 1). Performing an independent t-test or randomization test
on the normalized data showed that therewere no significant dif-
ferences across ASD and control groups (P > 0.5, independent t-
test and randomization test, Fig. 1B,E) and demonstrated that
the negative finding was not due to variability associated with
these confounding variables.

In a final analysis, we also stratified the ASD individuals into
subgroups with weak (ADOS <10), moderate (ADOS = 10–14), and
severe (ADOS >14) symptoms asmeasured by the total social and
communication ADOS scores. Both t-tests and randomization
tests did not reveal any significant differences between each of
the three ASD severity groups and their matched control groups
(P > 0.25 for all comparisons, Fig. 1C,F).

Gross Anatomy and ROIs of Special Interest

Equivalentmixed-model analyses were performed separately for
each of the following measures: white matter volume, gray mat-
ter volume, cortical thickness, and cortical surface area as well as
cerebellar graymatter, cerebellar whitematter, amygdala, hippo-
campus, CC, and ventricular volumes. All volumetric measures
were first translated to percentages of intracranial volume in
order to compensate for differences in intracranial volumes

Figure 1. Scatter plot of intracranial volumes of individuals with ASD (gray) and controls (black) in each site (A). Sites are ordered according to age. Mean (SD) age and

scanner type are noted for each site (GE, General Electric; P, Phillips; S, Siemens). Bars represent the mean intracranial volume of each group across sites (B). An

additional scatter plot (C) represents intracranial volumes after separating ASD subjects into subgroups with ADOS <10, 10–14, and >14. Panels on bottom row show

equivalent analyses after regressing out variability associated with site, age, and IQ (D–F). Asterisks: significant differences (P < 0.05, randomization test, FDR corrected

for multiple comparisons). Horizontal black lines: mean across site (A, D) or group (C, F). Error bars: standard error of the mean across subjects.
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across subjects. Here too, several measures exhibited significant
differences across groups, but also significant interactions be-
tween group and site. We, therefore, normalized differences
across sites, ages, and IQ levels and re-examined group differ-
ences using independent t-tests and randomization tests (Fig. 2).

These analyses revealed that only ventricular volume was
significantly larger in the autism group when compared with
controls (P < 0.001, randomization test, FDR corrected). All other
anatomical measures did not differ significantly across groups
(P > 0.1). A “per-site” analysis showed that the vast majority of
sites did not exhibit significant differences across groups for
any of the measures. In the case of cortical gray matter, 2 sites
exhibited contradictory findings. Effect sizes across groups were
small with the largest one evident in the comparison of ventricu-
lar volumes (d = 0.34).

Stratifying the ASD individuals into subgroups with weak
(ADOS <10), moderate (ADOS = 10–14), and severe (ADOS >14)
symptoms did not reveal any additional differences across
groups. None of the autism severity groups showed significant
differences from the control group for anyof the anatomicalmea-
sures including the ventricular volumes (P > 0.07, randomization
test, FDR corrected, Supplementary Fig. 2). This shows that the
difference in ventricular volumes across groups is relatively
weak and does not appear reliably when sampling smaller
subgroups of autism and control subjects.

Finally, we also examined whether there were volumetric
group differences in specific segments of the CC. The CC of
each subject was segmented into 5 equal parts along the anter-
ior–posterior axis and the volume of each part was calculated
(Fig. 3). The ASD group exhibited significantly smaller volumes
in the central CC segment when compared with the control
group (P < 0.05, randomization test, FDR corrected). Note that
the effect size of this finding was small (d = 0.2) and that signifi-
cant differences appeared in only 2 of the 18 sites.

Additional Cortical and Subcortical Areas

Univariate comparisons across groups were performed for each
of 148 cortical and 32 subcortical ROIs that were defined in an
automated manner for each subject using the Freesurfer atlas
(see Materials and Methods). Volumetric measures were normal-
ized by total intracranial volume and variability associated with
site, age, and IQ was regressed out for each measure separately.
Analysis of the cortical ROIs revealed that individuals with ASD
exhibited significantly thicker cortex than controls in several
ROIs including the right and left occipital poles, left middle oc-
cipital sulcus, left occipital-temporal sulcus, left cuneus gyrus,
right and left subparietal sulci, and left superior temporal gyrus
and sulcus (P < 0.05, independent t-test, FDR corrected, Fig. 4).
There were no significant differences in volumetric or surface
area measures between groups. There were also no significant
volumetric differences between groups in any of the subcortical
ROIs.

Correlations with IQ and ADOS

Intracranial, gray, and white matter volumes as well as cortical
surface were positively and significantly correlated with IQ in
both control and ASD groups (P < 0.05, randomization test, uncor-
rected to increase sensitivity, Fig. 5, top andmiddle rows). Indivi-
duals with ASD also exhibited significant positive correlations
between gray and white matter volumes and cortical surface
area measures and ADOS scores (Fig. 5, bottom row). Note that

all correlations were computed after regressing out site and age
as performed in the analyses described above.

Classification

We used a linear discriminant analysis (LDA) classifier to decode
the group identity of individual subjects (Fig. 6). A 10-fold valid-
ation scheme was used to assess the decoding accuracy of the
classifier such that 90% of the data were used to train the classi-
fier and the left-out 10% was used to assess decoding accuracy.
This procedure was performed 10 times, each time leaving out
a different subset of subjects for testing. A randomization
analysis was used to determinewhether decoding accuracies ex-
ceeded chance levels (see Materials and Methods). Classification
was performed using 5 anatomical feature sets: all ROI volumes
(180 ROIs), only gray matter ROI volumes (148 ROIs), only subcor-
tical ROI volumes (32 ROIs), cortical thickness (148 ROIs), and
cortical surface area (148 ROIs).

Above-chance decoding accuracieswere foundwhen classify-
ing all ASD and control subjects using subcortical volumes and
cortical thickness measures (accuracies = 56% and 60%, respect-
ively, P < 0.05, uncorrected to increase sensitivity). No other ana-
tomical measures yielded significant, above-chance decoding
accuracies. When performing the same analysis separately on
ASD subgroups with different symptom severities, above-chance
decoding accuracies were found only for the ASD subgroup with
severe symptoms using subcortical volumes (accuracy = 60%,
P < 0.05, uncorrected).

Additional analyses using a “leave-two-out” validation
scheme with an LDA classifier or a 10-fold validation scheme
with a quadratic discriminant analysis classifier (i.e., nonlinear
classifier) revealed similar decoding accuracies that did not
exceeded 60% and exceeded chance level only with subcortical
volumes and cortical thicknessmeasures (Supplementary Fig. 3).

Finally, we performed a per-site classification analysis within
the 5 sites that contained at least 20 subjects in each group (Sup-
plementary Fig. 4). This analysis revealed variable and weak de-
coding accuracies across sites, which did not exceed 60% for any
of the sites when using any of the anatomical measures. This
suggests that the poor decoding accuracies found across sites
were not due to between-site variability, but rather to the lack
of consistent separation across ASD and control individuals.

Classification of Different Group Sizes

We evaluated our classification procedures on smaller, randomly
selected groups of subjects (n = 20, n = 50, n = 100, n = 150, and n =
200) to characterize the relationship between group size and the
distribution of decoding accuracies. Randomly selected sub-
groups of ASD individuals were age and IQmatched to control in-
dividuals and the LDA classification analysis was performed
using the 10-fold and leave-two-out validation schemes (Fig. 7).
This procedure was repeated 100 times for each group size
while selecting different subjects each time, thereby yielding a
distribution of decoding accuracies for each group size. Smaller
group sizes yielded wider decoding accuracy distributions re-
gardless of the anatomical measures used to perform the classi-
fication. For example, performing this analysis with 148 cortical
surface area measures revealed that ∼30% of the randomly se-
lected groups containing 20 subjects in each group (marked
with a star) exhibited decoding accuracies >60%. Note that this ef-
fect wasmore prominent in the leave-two-out validation scheme
and that the real accuracy computed on the entire ABIDE data in
this case was indistinguishable from chance level (51%). Since
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Figure 2. Scatter plots of cortical white matter volume, cortical gray matter volume, cortical thickness, cortical surface area, and cerebellar white matter, cerebellar gray

matter, hippocampus, amygdala, corpus callosum (CC), and ventricular volumes in individualswithASD (gray) andmatched controls (black) separately for each site. Bars:

means across sites for each subject group. Asterisks: significant differences (P < 0.05, randomization test, FDR corrected). Error bars: standard error of the mean across

subjects. d = Cohen’s d (effect size across groups).
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there are multiple feature sets that can be chosen, the use of
small groups and the choice of an arbitrary feature set holds
the potential of greatly inflating decoding accuracies.

Age and Data Sampling Effects

To assess the effects of age on the examined anatomical mea-
sures, we also computed growth curves for each of the gross

Figure 3. Scatter plots of corpus callosum segment volumes in individuals with ASD (gray) andmatched controls (black) separately for each site. Bars: means across sites

for each subject group. Asterisks: significant differences (P < 0.05, randomization test, FDR corrected). Error bars: standard error of the mean across subjects. d = Cohen’s d

(effect size across groups).

Figure 4.Cortical ROIs thatwere significantly thicker in the ASD group comparedwith the control group. Therewere no significant differences in the opposite comparison.

Significance was assessed using a t-test and FDR was used to correct for multiple comparisons.

Anatomical Abnormalities in ASD Haar et al. | 7

 at B
en G

urion U
niversity - A

ranne L
ibrary on O

ctober 15, 2014
http://cercor.oxfordjournals.org/

D
ow

nloaded from
 

http://cercor.oxfordjournals.org/


anatomy measures in each of the groups. We used a linear, an
exponential, and a quadratic term to fit the data of the ASD
and control subjects separately. The use of the 3 predictors en-
abled us to avoid making any assumptions regarding the shape
of the fitted curve. The estimated parameters did not differ sig-
nificantly across groups (P > 0.3, randomization test). We,

therefore, performed a multiple regression analysis for the en-
tire sample (ASD and controls) and regressed out the variability
associated with age, effectively flattening the growth curves of
both groups (Supplementary Fig. 5), and performed the ana-
lyses described above using the residuals of this regression
analysis.

Figure 5. Correlation of intracranial volume, white matter volume, gray matter volume, cortical thickness, and cortical surface area, with IQ in the control (top row) and

autism (middle row) groups or with ADOS (bottom row). Asterisks: significant correlation (P < 0.05, randomization analysis, uncorrected to increase sensitivity).

Figure 6.Decoding accuracies. Classification of group identitywas performed separately for all subjects and threeASD subgroupswhohadADOS scores <10, ADOS = 10–14,

or ADOS >14. Bars show decoding accuracies for each of the following feature sets: all 180 ROI volumes, 32 subcortical ROI volumes, 148 cortical ROI volumes, 148 cortical

ROI thicknesses, and 148 cortical ROI surface areas. Error bars: 5th and 95th percentiles of chance accuracy distribution as estimated with a randomization analysis.

Asterisks: significant decoding accuracies (P < 0.05, uncorrected to increase sensitivity).
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In afinal set of analyses, we demonstrate that similar findings
to those reported above are apparentwhen relaxing inclusion cri-
teria so as to include the vast majority of viable MRI scans avail-
able in the ABIDE database. Here, we selected 906 subjects (half
with ASD) without matching ASD and control subjects with re-
spect to gender, IQ or age. Our only sampling criterion here was
to ensure that the number of ASD and control subjects was
equal at every site. Equivalent comparisons of the gross anatom-
ical measures and ROIs of special interest (after regressing out
the variance associated with site and age) revealed that the
ASD group exhibited significantly smaller white matter volume,
smaller cerebellar gray matter volumes, larger cortical thickness,
and larger ventricles volume than the control group (Supplemen-
tary Fig. 6). Here too, effect sizes were small (cohen’s d ≤ 0.32 for
all measures) with large between-subject variability apparent in
both groups. An equivalent classification analysis using the LDA
classifier and the 10-fold validation scheme showed that decod-
ing accuracies were significantly above-chance when using all
ROI volumes, subcortical volumes, and cortical thickness mea-
sures (P < 0.05, randomization analysis, uncorrected), yet all de-
coding accuracies were below 60% (Supplementary Fig. 7). Note
that the slightly larger between-group differences apparent in
this larger sample may have been driven by age, IQ, and gender
differences across ASD and control groups that were not equated
in this sample.

Choice of Segmentation Tool

The analyses above were performed using anatomical measures
that were computed with the Freesurfer segmentation and par-
cellation algorithms. We also performed an additional analysis
using the FAST tissue-type segmentation algorithm, which is
part of the FSL toolbox (Jenkinson et al. 2012). This algorithm is
limited in comparison to Freesurfer and enables extraction of
only 3 anatomical measures: total gray matter (cortical and cere-
bellar), white matter (cortical and cerebellar), and CSF volumes.
Comparisons of these measures across the 2 groups showed,
again, no significant differences across groups and large with-
in-group variability (Fig. 8).

Discussion
Analyses of anatomical MRI scans from the ABIDE database
revealed several weak yet significant differences across ASD
and control groups. Of the 180+ examined ROIs, significant

differences were found only in ventricular volumes, the central
segment of the CC, and in cortical thickness measures of several
occipital and temporal ROIs (Figs 2 and 4). Therewas no evidence
for between-group differences in anymeasures of gross anatomy
or in specific brain regions including the amygdala, hippocam-
pus, most segments of the CC, and the cerebellum, which
have been implicated in previous anatomical studies of ASD
(Figs 1–3). These results suggest that many of the previously
reported anatomical abnormalities are likely to be of low scientif-
ic and clinical significance for explaining ASD neuropathology as
a whole in individuals 6–35 years of age. Instead, it may be more
useful to divide the heterogeneous ASD population into genetic-
ally, clinically, and/or behaviorally homogeneous subgroups and
attempt to identify unique anatomical abnormalities in each.

Attempts to decode the group identity of single subjects with
multivariate classification techniques using different sets of ana-
tomical measures revealed remarkably weak decoding accur-
acies. While decoding accuracies using volumetric measures of
subcortical areas and cortical thickness measures were signifi-
cantly above-chance level, all accuracies were below 60% (Fig. 6
and Supplementary Figs 3 and 7). Poor decoding accuracies dem-
onstrate that weak anatomical differences are apparent only at
the group level and offer very limited diagnostic value at the sin-
gle-subject level, likely due to the considerable anatomical vari-
ability across subjects of each group.

Taken together, our results suggest that individuals with ASD
ages 6–35 years old who are capable of participating in MRI stud-
ies (i.e., high-functioning individuals with IQ >70), present ana-
tomical profiles that are mostly indistinguishable from those of
control individuals. Small differences across groups were greatly
overshadowed by considerablewithin-group variability apparent
in both ASD and control groups (Figs 1–3). While consistent ana-
tomical abnormalities may be evident in toddlers with ASD dur-
ing early development (Courchesne et al. 2004, 2007; Amaral et al.
2008; Stanfield et al. 2008), our results suggest that these abnor-
malities are not apparent in children, adolescents, and adults
with ASD despite their persisting behavioral problems.

Gross Anatomical Findings in ASD

Numerous studies have reported that toddlers aged 1–4 years old
who are later diagnosed with ASD exhibit gross anatomical dif-
ferences including increased head circumferences and intracra-
nial volumes in comparison to control toddlers (Courchesne
et al. 2001, 2004, 2011; Amaral et al. 2008; Shen et al. 2013). In con-
trast to the studies in toddlers, there is considerable controversy
regarding the presence and significance of gross anatomical ab-
normalities in individuals with ASD above the age of 6 years.
While some studies have reported that individuals with ASD ex-
hibit increased gray (Lotspeich et al. 2004; Palmen et al. 2004; Ha-
zlett et al. 2006; Ecker et al. 2013) and white (Hazlett et al. 2006)
matter volumes, others have reported no group difference
(Ecker, Rocha-Rego et al. 2010; Ecker et al. 2012). Additional stud-
ies have reported that individuals with ASD exhibit significantly
thicker cortices (Hardan et al. 2006) while others have reported
the opposite (Scheel et al. 2011). The definitive findings reported
here show that intracranial, gray matter, and white matter
volumes, overall cortical thickness, and surface area measures
are not significantly different across groups (Figs 1 and 2).
These results suggest that persistent ASD behavioral symptoms
are not ubiquitously associatedwith gross anatomical abnormal-
ities in 6–35 year old individuals with ASD, regardless of their
symptom severity (Supplementary Fig. 2). The transition from
positive to negative findings when examining toddlers versus

Figure 7. Decoding accuracy distributions when performing classification

analyses with random samples of 20 (star), 50 (diamond), 100 (circle), 150

(triangle), and 200 (square) subjects in each group using cortical surface area

measures. Black line: decoding rate for entire ABIDE data with 10-fold (left) and

leave-two-out (right) validation schemes.
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older individuals supports recent hypotheses, which have sug-
gested that ASD is characterized by early brain overgrowth fol-
lowed by arrested growth or even degeneration at later ages
(Courchesne et al. 2011).

Brain Areas of Special Interest

Similar controversy exists regarding the presence and signifi-
cance of anatomical abnormalities in several ROIs of specific
interest to ASD research including the amygdala, hippocampus,
cerebellum, and CC. The “Amygdala theory of autism” has sug-
gested that abnormalities in the amygdala may explain the so-
cial and emotional difficulties found in ASD (Baron-cohen et al.
2000). While some studies have reported significantly larger
amygdala volumes in ASD individuals than controls, others
have reported no difference across groups, and one study has
reported the opposite (Bellani et al. 2013a). There were no
significant differences across groups in our study in amygdala
volumes (Fig. 2) nor in hippocampus volumes, another limbic
system region of particular interest for ASD research (Sweeten
et al. 2002).

The CC has also been a focus of attention following several
theories that have proposed poor long-range neural connectiv-
ity/synchronization in ASD (Gepner and Féron 2009). While
some studies have reported significantly smaller CC volumes in
ASD individuals than controls, others have reported no differ-
ence across groups (Bellani et al. 2013b). We found no significant
between-group difference when assessing the entire CC volume
(Fig. 2), yet a more detailed analysis revealed that the ASD
group exhibited a significantly smaller volume in the central seg-
ment of the CC when compared with the control group (Fig. 3).
The effect size of this difference, however, was very small
(Cohen’s d = 0.2) and stands in contrast to previous estimates of
much larger effect sizes in all CC segments (Cohen’s d > 0.4,
Frazier and Hardan 2009).

Studies of the cerebellum in ASD individuals have reported
mixed findings, as well, with some documenting abnormally

large cerebellar volumes (Hardan, Minshew, Harenski et al.
2001; Scott et al. 2009) and abnormally small vermis volumes
andmidsagittal vermis areas, often found only in specific lobules
(Courchesne et al. 1988, 1994). Here, we only assessed cerebellar
gray and white matter volumes and found no significant differ-
ences across groups (Fig. 2).

Ventricles

While early ventriculomegaly (enlarged ventricles) is associated
with multiple developmental delays (McKechnie et al. 2012),
only a few studies have assessed ventricle volumes in ASD with
some (Palmen et al. 2004) but not others (Hardan, Minshew,
Mallikarjuhn et al. 2001) reporting significantly larger ventricle
volumes in ASD. Our results revealed significantly larger ven-
tricle volumes in ASD when compared with controls (Fig. 2), yet
differences across groups exhibited a relatively small effect size
(Cohen’s d = 0.34).

Relationship Between Volume, IQ, and ADOS

Our findings are consistent with previous studies that have re-
ported significant correlations between IQ and gross anatomical
measures (Deary et al. 2010). Both control and ASD subjects ex-
hibited significant positive correlations between IQ and intracra-
nial, gray, and white matter volumes as well as cortical surface
area (Fig. 5). ASD individuals also exhibited significant positive
correlations between ADOS scores and gray and white matter
volumes as well as cortical surface area. Considering that gross
anatomical measures are a function of neuronal loss, synaptic
pruning, and gray matter shrinkage, in conjunction with white
matter maturation and growth (as evident in the growth curves
of Supplementary Fig. 5), it is intriguing that similar positive
correlations exist between gross anatomical developmental
measures and IQ/ADOS scores. Our results, however, offer
very limited insight regarding the meaning of these general
associations.

Figure 8. Results from the FSL FAST algorithm revealed no significant differences across groups. Scatter plots of cerebrospinal fluid (CSF), gray matter, and white matter

volumes in individuals with ASD (gray) and matched controls (black) separately for each site. Bars: means across sites for each subject group. Asterisks: significant

differences (P < 0.05, randomization test, FDR corrected). Error bars: standard error of the mean across subjects. d = Cohen’s d (effect size across groups).
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When considering the IQ range of the current ASD sample, it
is important to note that our results are limited to relatively high-
functioning ASD individuals (IQ mean = 106, standard deviation,
SD = 17). ASD individuals with lower functionmay potentially ex-
hibit significant structural abnormalities and stronger correla-
tions with behavioral measures. Studies with ASD individuals
of lower function are generally missing from the ASD neuroima-
ging literature and are highly warranted.

Multivariate Classification of Autism

Multivariate classification techniques offer a method for decod-
ing the group identity of ASD and control subjects based on pat-
terns of anatomical features, rather than single anatomical
measures. Several recent studies have reported exceptional de-
coding accuracies (over 85%) of group identity when using mea-
sures of cortical thickness, geometry, curvature, and/or surface
area in small samples of 20–30 subjects from each group (Ecker,
Marquand et al. 2010; Jiao et al. 2010; Uddin et al. 2011). These
studies have suggested that distributed anatomical abnormal-
ities can consistently be used to identify adults with ASD.

Performing similar multivariate analyses with the ABIDE data
revealed much lower decoding accuracies (<60%), which
exceeded chance levels only when usingmeasures of subcortical
volumes or cortical thickness (Fig. 6). Similarly weak decoding
accuracies were found when using different validation schemes
(i.e., leave-two-out instead of 10-fold validation) and when
using linear or nonlinear classification algorithms (Supplemen-
tary Fig. 3). In addition, performing the same classification ana-
lyses within each of the 5 largest sites (>20 subjects in each
group) revealed equivalent results with accuracy rates below
60% in all sites. These results suggest that weak classification ac-
curacies were not generated by differences across sites or the
choice of a particular classification algorithm or validation
scheme. Instead, we believe that theseweak decoding accuracies
were the consequence of the considerable within-group variabil-
ity, which was clearly evident in the univariate analyses (Figs 1–
3). Variable and inconsistent anatomy across individuals of each
group is expected to reduce classification accuracy across groups.

While classification techniques hold great promise, they also
suffer fromamajor potential pitfall: overfitting. The accuracyand
validity of a classifier depend on the number of features being
considered and the number of subjects available for training
and testing. In situations where there are more anatomical fea-
tures than subjects, the classification algorithm may arbitrarily
separate individual subjects into meaningless groups by overfit-
ting noise/variability (Cawley and Talbot 2010). When only a
small number of subjects are left out for testing, there is a risk
of arbitrarily inflating decoding accuracies. This was clearly ap-
parent when we performed classification analyses with small,
randomly selected subgroups. For example, when decoding sub-
ject identity based on cortical thickness measures, the actual de-
coding accuracy was 51%, yet roughly 30% of randomly selected
small groups (20 ASD/20 control subjects) exhibited decoding ac-
curacies above 60%. When considering the multitude of anatom-
ical features that can be used for classification, the potential of
finding a set of features that yields accurate decoding seems ex-
tremely high. It is, therefore, critical to evaluate classification
schemes on large samples and test their generalizability.

Automated Analyses Using Large Multicenter Samples

We believe that the controversy regarding the presence and sig-
nificance of anatomical abnormalities in ASD is a result of the

fact that the majority of previous studies recruited small ASD
and control samples with distinct age, IQ, and ASD severity char-
acteristics from general populations that have considerable ana-
tomical variability. We suggest that studies with such small
samples are unlikely to capture the true anatomical distributions
of either population and are, therefore, unlikely to yield consist-
ent results. The only way to identify robust differences across
ASD and control groups and reconcile previous contradictions
in the literature is to assess anatomical differences across large
cohorts where age, IQ, gender, and autism severity factors can
be controlled for (or their relative contribution assessed) and
the true anatomical distribution of each measure can be esti-
mated for each group as performed here using the ABIDE data.

The down side of evaluating the ABIDE data is that aggregated
MRI scans from multiple international sites may contain large
between-site variability, resulting from possible confounding
factors, for example, autism diagnosis, and hence, subject selec-
tion may differ across sites such that sites with unique clinical
criteria may “contaminate” the dataset. All of the participants
in the current study, however, were characterized with the stan-
dardized ADOS assessment, which is the current “golden stand-
ard” for identifying individuals with ASD. Another possible
confound is the heterogeneity ofMRI scanners and scanning pro-
tocols across sites. Fortunately, however, automated estimations
of cortical and subcortical volumes with Freesurfer have been
shown to be remarkably robust across MRI scanners of different
manufacturers (varying by 0–3%) as long as the field strength is
kept constant at 3T (Jovicich et al. 2009). The third and likely lar-
gest source of variability across sites is generated by genetic and
environmental heterogeneity, which are known to affect brain
anatomy (Thompson et al. 2001).

To address this caveat, we performed several analyses to en-
sure that our results were not due to between-site variability.
First, we used a standard mixed-model approach to examine
the contribution of site differences to potential differences be-
tween ASD and control groups. In an additional step, we re-
gressed out the differences across sites and performed several
univariate and multivariate analyses with data where the mean
of each site had been normalized. Finally, we performed per-site
analyses to determine reliability of results across multiple sites.
These analyses reassured us that the conclusions of this study
were not based on potentially misleading between-site differ-
ences or on spurious findings that were apparent in only a
small minority of sites. Perhaps the strongest impression one
should gain from examining the presented data is that the vast
majority of sites do not show any consistent anatomical differ-
ences across groups. Importantly, in order for group differences
to be clinically relevant, they must be robust to differences in
MRI scanning parameters as well as genetic and environmental
heterogeneity.

Implications for Future ASD Research

The current study demonstrates that anatomical differences be-
tween high-functioning ASD and control groups (aged 6–35 years
old) are very small in comparison to large within-group variabil-
ity. This suggests that anatomical measures alone are likely to be
of low scientific and clinical significance for identifying children,
adolescents, and adults with ASD or for elucidating their neuro-
pathology. Rather than expecting to find consistent anatomical
abnormalities across the entire ASD population, it may be more
reasonable to search for subgroups of ASD individuals with
more homogeneous etiologies who may (or may not) exhibit
common structural findings. Determining how to segregate
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ASD individuals into meaningful subgroups based on genetic
profiling, clinical comorbidities, sensory sensitivities, and other
relevant measures seems to be the most urgent next step for fu-
ture ASD research. Further efforts to aggregate broad clinical,
genetic, andneuroimaging data from largeASD samples of differ-
ent ages and IQ levels will be extremely helpful in achieving this
goal.

Supplementary Material
Supplementary material can be found at: http://www.cercor.ox-
fordjournals.org/.
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