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SUMMARY
Visual skill learning is the process of improving responses to surrounding visual stimuli.1 For individuals with
autism spectrum disorders (ASDs), efficient skill learning may be especially valuable due to potential diffi-
culties with sensory processing2 and challenges in adjusting flexibly to changing environments.3,4 Standard
skill learning protocols require extensive practice with multiple stimulus repetitions,5–7 which may be difficult
for individuals with ASD and create abnormally specific learning with poor ability to generalize.4 Motivated by
findings indicating that brief memory reactivations can facilitate skill learning,8,9 we hypothesized that reac-
tivation learning with few stimulus repetitions will enable efficient learning in individuals with ASD, similar to
their learning with standard extensive practice protocols used in previous studies.4,10,11 We further hypoth-
esized that in contrast to experience-dependent plasticity often resulting in specificity, reactivation-induced
learning would enable generalization patterns in ASD. To test our hypotheses, high-functioning adults with
ASD underwent brief reactivations of an encoded visual learning task, consisting of only 5 trials each instead
of hundreds. Remarkably, individuals with ASD improved their visual discrimination ability in the task sub-
stantially, demonstrating successful learning. Furthermore, individuals with ASD generalized learning to an
untrained visual location, indicating a unique benefit of reactivation learningmechanisms for ASD individuals.
Finally, an additional experiment showed that without memory reactivations ASD subjects did not demon-
strate efficient learning and generalization patterns. Taken together, the results provide proof-of-concept
evidence supporting a distinct route for efficient visual learning and generalization in ASD, which may be
beneficial for skill learning in other sensory and motor domains.
RESULTS

Learning processes responsible for consistent improvements

in visual skill performance have commonly been associated

with experience-dependent mechanisms that gradually reor-

ganize the primary visual cortices and their readout path-

ways.1,12,13 This experience-dependent plasticity usually re-

quires extensive practice and multiple stimulus repetitions,13

and often results in over-specificity of learning, thus limiting

generalization patterns.14–16 As such, learning is both exhaus-

tive and restricted to the learned information, such as the tar-

get’s location and background.17 Therefore, these learning

protocols seem to constrain adaptive behavior that may be

necessary for accurately responding to rapidly changing

environments.

Autism spectrum disorder (ASD) is a neuro-developmental

disorder that is defined by impairments in social communication
Curre
and the presence of restricted and repetitive behaviors.18 Many

individuals with ASD also have difficulties with processing, inte-

grating, and regulating sensory stimuli.2 For individuals with

ASD, improving skill performance via intensive repetition-based

practice is commonly used in learning protocols and treatment

approaches;3,19 however, the efficacy of repetitive learning ap-

proaches with respect to perceptual learning is less clear.20

Interestingly, in terms of generalization in ASD, it was shown

that repetition training results in over-specificity of visual

learning. Furthermore, it was shown that generalization patterns

can be enhanced by reducing sensory adaptation.4

Here, we examined whether learning that is based on memory

reactivations, i.e., brief task reminders that retrieve visual

learning without practice,8 would enable successful learning

and generalization in ASD. Such reactivation-based learning,

which consists of several trials each instead of hundreds, may

induce plasticity that is not dependent on repetitive experience,
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Figure 1. Visual memory-reactivation learning

task and protocol of experiment 1

(A) Visual texture discrimination task (TDT): example

trial. Subjects maintained fixation while discrimi-

nating between horizontal or vertical orientations of

a peripheral target consisting of three diagonal bars

surrounded by horizontal lines. The target was pre-

sented briefly and followed by a patterned mask.

The time between target andmask (SOA) was varied

within the session to obtain a psychometric curve,

from which the SOA discrimination threshold was

derived. A letter discrimination task (T/L) was used

to enforce fixation.

(B) Visual memory-reactivation learning protocol.

Following the initial encoding test session, subjects

performed three reactivation sessions, in which five reminder trials were performed using supra-threshold SOA (400 ms) in order to evoke the neural trace of the

already consolidated visual memory. On the fifth session, subjects were retested on the visual task and the final visual discrimination thresholds were measured.

Finally, to test whether reactivation learning generalized across retinotopic locations, subjects performed the same task at a different location in the visual field.

Every two consecutive sessions were separated by 2 days, to stabilize memory processes.
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thus offering a rapid form of perceptual learning.8 We therefore

reasoned that brief memory reactivations would successfully

induce learning in ASD. Moreover, we hypothesized that reacti-

vation-induced learning would enable generalization of ASD

learning across retinal locations.

To test these hypotheses, we had ASD individuals and aged-

matched neurotypical (NT) controls perform memory reactiva-

tions of a basic visual discrimination task (STAR Methods)

that usually requires extensive practice for demonstrating

improvement4,17 (experiment 1). Such reactivations were previ-

ously shown to induce learning in NTs.8 In this task, subjects

are required to determine the orientation of a peripheral target

embedded within a background, while fixation is enforced by a

forced-choice letter discrimination task (Figure 1A). In the initial

encoding session, subjects practiced the task and then their indi-

vidual thresholds were extracted. On each of the following three

sessions, subjects came for a short memory reactivation, i.e.,

only five reminder trials to retrieve the learned task without exten-

sive practice. Then, a full retest session was performed in order to

measure post-learning visual thresholds. On the last session, the

position of the peripheral target changed, and subjects were

required to generalize performance to the new retinotopic loca-

tion, without additional practice (Figure 1B). This generalization

test following reactivation learning was important, since when a

similar cohort of age- and gender-matched ASD subjects was

tested with the same task but under extensive-learning condi-

tions, generalization failed.4 An additional experiment was con-

ducted to test whether learning and generalization gains in ASD

would emergewithout memory reactivations. Thus, in experiment

2, ASD subjects performed the same test, retest, and generaliza-

tion sessions, but without memory reactivations (STARMethods).

In order to replicate such experimental designs, customary

sample sizes for psychophysical measurements were used

(STAR Methods), similar to those employed in the field including

in reactivation-induced learning8,9 and in ASD perceptual

learning studies,4,10,20,21 with each subject yielding large

amounts of temporal data for perceptual threshold analyses.

Thus, critically, all end point measures (test, retest, and general-

ization thresholds) were derived from extensive sessions (n = 288

trials each) and not from the reactivation sessions (n = 5 trials

each), which were the actual intervention. Therefore, as
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in previous psychophysical studies, reliable end point

measures are derived within each subject, resulting in high po-

wer and inferential validity, in accordance with similar statistical

approaches.22

The common end point measure of perceptual learning was

used, as the difference between initial test and final retest thresh-

olds, accounting for the inherent and commonly observed pre-

learning test threshold variability.4,8,12 Memory reactivations

induced significant learning in the ASD group, measured as

improvements in the individual visual thresholds between

test (mean = 140.4 ± 10.2 ms SE) and retest (mean = 106.0 ±

6.3 ms) sessions (Wilcoxon signed-rank test, p = 0.001)

(Figures 2A and S2A). These results demonstrate that ASD

individuals successfully learned with brief reactivations of only

5 trials each.

NT individual thresholds also improved significantly between

test (mean = 109.4 ± 9.5 ms) and retest (mean = 82.1 ± 9.0 ms)

sessions (p = 0.005, Wilcoxon signed-rank test) (Figures 2B

and S2A). As expected, performance in the test session showed

a trend indicating superior NT performance (Mann-Whitney

U tests, p = 0.063). Importantly, the magnitude of learning was

comparable between groups (mean test-retest improvement of

22.3% ± 3.8% in ASD, 25.8% ± 3.9% in NT, Mann-Whitney

U tests, p = 0.457) (Figure 2C). Additional analysis on the abso-

lute threshold difference confirmed the comparable learning

effects (ASD, 34.4 ± 7.6 ms; NT, 27.3 ± 3.7 ms, p = 0.951). The

results of comparable magnitude of learning between groups

were maintained when initial thresholds were included as a co-

variate in the analysis (ANCOVA, p = 0.327; STAR Methods).

To evaluate whether learning was generalized to the new reti-

notopic location, we compared the individual thresholds

measured at the generalization session to those measured at

the test session. Interestingly, reactivation-induced learning

facilitated ASD generalization patterns, measured as improved

thresholds at the generalization session (mean = 103.1 ±

9.8 ms), compared with the test session (p = 0.005, Wilcoxon

signed-rank test for paired samples) (Figures 2A and S2A).

In line with results obtained by standard visual learning

protocols,12 NT individuals did not show efficient generalization

(mean = 103.8 ± 9.7 ms, p = 0.103, Wilcoxon signed-rank test),

with a highly consistent V-shaped pattern (Figures 2B and



Figure 2. Reactivation learning and generalization

(A) Individual visual thresholds in all sessions for individuals with ASD (test, n = 13; retest, n = 13; generalization, n = 10; STAR Methods). Accordingly, between-

session comparisons were conducted independently on test-retest (n = 13) and test-generalization (n = 10) threshold improvements. Each shaded data point

represents one subject’s performance along the full experiment.

(B) Individual visual thresholds in all sessions (test, retest, and generalization, all n = 10) for neurotypical (NT) individuals.

(C) Individual learning gains at the reactivated location, measured as improvement between test and retest sessions.

(D) Individual generalization gains at the new location, measured as improvement between test and generalization sessions.

In all plots, the squares denote the boxplots. Each box shows themedian value (horizontal line inside each box) and the 25th and 75th percentiles (lower and upper

limits of each box, respectively). In all boxplots, the whiskers cover the range of the data. See also Figure S2. **p < 0.01.
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S2A). Correspondingly, individuals with ASD had significantly

greater generalization gains relative to NTs (mean test-general-

ization improvement of 23.5% ± 4.9% in ASD, 5.2% ± 2.7% in

NT,Mann-Whitney U test, p = 0.003) (Figure 2D). Additional anal-

ysis on the absolute threshold difference confirmed that ASD

subjects obtained significantly greater generalization gains

relative to NT subjects (ASD, 34.9 ± 9.6 ms; NT, 5.6 ± 3.1 ms,

p = 0.002). These results were maintained when initial thresholds

were included as a covariate in the analysis (ANCOVA, with a sig-

nificant effect of group, p = 0.01).

A complementary repeated-measures mixed-model ANOVA

on ranks with session as a within-subject factor and group as a

between-subject factor showed a significant interaction

(F2,39.255 = 5.036, p = 0.011). As expected, post hoc comparisons

verified significant improvements between test and retest ses-

sions in both groups (ASD, p < 0.001; NT, p < 0.001) and test-

generalization improvement in ASD subjects and not in NTs

(ASD, p < 0.001; NT, p = 0.266).

To assure that all subjects performed the task as instructed

and focused their gaze on the center of the screen, we verified
that the average hit rate of the central letter task over all stimulus

onset asynchronies (SOAs) maintained a high level of perfor-

mance across test (ASD, mean hit rate = 90.5% ± 1.1%;

NT, 95.0% ± 1.1%), retest (ASD, 92.7% ± 1.3%; NT,

97.2% ± 0.7%), and generalization (ASD, 91.8% ± 2.9%; NT,

96.8% ± 0.8%) sessions. Consistent with the results of the

peripheral task, performance in the initial test session was

higher for NT relative to ASD subjects (Mann-Whitney U test,

p = 0.041). Importantly, the small test-retest improvements

(ASD, 2.4%±0.9%; NT, 2.4%±1.4%, p = 0.324) and test-gener-

alization improvements (ASD, 0.6% ± 2.4%; NT, 1.9% ± 1.4%,

p = 0.174) were comparable across groups. In addition, the hit

rate for the central letter discrimination task was verified to be

above chance level even at the lowest SOAs (Wilcoxon signed-

rank test for one sample, p < 0.05 for all tests).

Next, we analyzed the reaction times for each session and

group. In accordance with previous findings,4 ASD subjects

demonstrated slower reaction times compared with NT subjects

along all experimental sessions. Both groups demonstrated test-

retest and test-generalization improvements (Figures S2B and
Current Biology 32, 3203–3209, July 25, 2022 3205



Figure 3. Measuring learning and generalization without memory reactivation

(A) Individual visual thresholds in all sessions (test, n = 10; retest, n = 10; generalization, n = 8; STARMethods). Accordingly, between-session comparisons were

conducted independently on test-retest (n = 10) and test-generalization (n = 8) threshold improvements. Each shaded data point represents one subject’s

performance along the experiment.

(B) Individual learning gains at the reactivated location, measured as improvement between test and retest sessions.

(C) Individual generalization gains at the new location, measured as improvement between test and generalization sessions.

In all plots, the squares denote the boxplots. Each box shows themedian value (horizontal line inside each box) and the 25th and 75th percentiles (lower and upper

limits of each box, respectively). In all boxplots, the whiskers cover the range of the data.

See also Figure S3.
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S2C), the latter in linewith the suggestion that reaction timesmay

reflect general motor and cognitive factors of the task beyond vi-

sual learning per se.23

Could learning and generalization gains in ASD emerge

without memory reactivations? To address this question, we

conducted an additional experiment in which a similar age and

gender cohort of ASD subjects underwent the same test, retest,

and generalization sessions, but without memory reactivations

(STAR Methods).

The results showed that without memory reactivations, there

was no significant learning between test (mean = 154.6 ±

17.1ms) and retest (mean = 137.9 ± 18.8ms) sessions (Wilcoxon

signed-rank test, p = 0.114; Figures 3A and S3A; test-retest dif-

ference 10.1% ± 5.3%; Figures 3B and S3A). A complementary

analysis showed that baseline thresholds of no-reactivation ASD

subjects were comparable to those of ASD subjects who under-

went reactivations (Mann-Whitney U test, p = 0.620). An addi-

tional between-experiments confirmatory analysis showed that

ASD learning without reactivations was smaller than learning

with reactivations (exp1, 22.3% ± 3.8%; exp2, 10.1% ± 5.3%,

Mann-Whitney U test, p = 0.047). This trend was also evident

in an additional absolute performance differences analysis

(exp1, 34.4 ± 7.6 ms; exp2, 16.6 ± 10.2 ms, p = 0.072).

Without reactivations there was no significant generalization

(135.5 ± 7.3 ms, p = 0.161; Figure 3A; test-generalization differ-

ence 5.8% ± 3.2%; Figure 3C). An additional analysis revealed

that generalization gains were superior following memory reacti-

vations compared to without reactivations (exp1, 23.5% ± 4.9%;

exp2, 5.8% ± 3.2%, p = 0.009), which was also evident in an ab-

solute performance differences analysis (exp1, 34.9 ± 9.6 ms;

exp2, 10.9 ± 6.3 ms, p = 0.026), further pointing to the beneficial

role of memory reactivations in enhancing generalization in ASD.

Subjects in the second experiment performed the task as in-

structed, focusing their gaze on the letter at the center of the

screen, as indicated by the high hit rates across all SOAs

(mean hit rate, test = 93.3% ± 1.1%, retest = 93.4% ± 1.4%,

generalization = 94.5% ± 1.2%). In addition, the hit rate for the
3206 Current Biology 32, 3203–3209, July 25, 2022
central letter discrimination task was verified to be above

chance level even at the lowest SOAs (Wilcoxon signed-rank

test for one sample, p < 0.05 for all tests). Reaction times again

showed general test-retest and test-generalization improve-

ments (Figure S3B).

DISCUSSION

The results indicate that brief memory reactivations induced

improvements in ASD visual skill performance. Thus, ASD in-

dividuals successfully learned with brief reactivations of only

5 trials each instead of hundreds of trials. Importantly, the

magnitude of learning was comparable to NTs, suggesting

that offline learning mechanisms operate efficiently in ASD

and enable successful learning even without extensive prac-

tice, which in itself is highly efficient in ASD.4 This result is

consistent with the notion that ‘‘practice makes perfect’’ is

not the only route for skill acquisition, which has received sup-

port in previous studies.8,24,25 In addition, ASD participants

efficiently generalized their learning to an untrained visual

location. Such generalization fails when a similar cohort of

age- and gender-matched ASD subjects perform the same

task under extensive practice conditions.4 Finally, an addi-

tional experiment without memory reactivations showed that

ASD subjects did not demonstrate efficient learning and

generalization patterns.

Our reactivation learning protocol utilizes the framework of

memory reactivations as a mechanism for skill modifications.8

This framework is based on findings showing that following

retrieval, memory is susceptible to external and internal alter-

ations, presumably due to the effects of offline neural mech-

anisms that reconsolidate the memory trace, thus allowing

continuous memory updating.26,27 Accordingly, with each re-

activation, the original memory trace may be subsequently

strengthened offline,8,28 providing sufficient conditions for

efficient learning without extensive practice. Studies of motor

skill learning have also shown that an already consolidated
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skill can be modified upon its reactivation.24,29–32 Based on

these commonalities in memory processes, which are shared

across skill domains,5 it would be valuable to test whether re-

activation learning may be beneficial for skill learning in other

domains33–36 with potential clinical utility for education and

treatment protocols in ASD. Of note, in the current study,

we used constant supra-threshold reactivations. However, it

is plausible that other reactivation conditions, such as near-

threshold reminders, would facilitate learning and generaliza-

tion in ASD.

Interestingly, individuals with ASD exhibited generalization

patterns, potentially pointing to a different reactivation-induced

learning mechanism relative to NTs. For example, this may sug-

gest that reactivation-induced learning engages high-order rep-

resentations that are not restricted to specific low-level retino-

topic locations in ASD. Furthermore, a recent study4 that

tested generalization of visual discrimination thresholds found

that reducing visual adaptation by inserting non-target trials be-

tween stimulus repetitions eliminated over-specificity in ASD.

Accordingly, memory reactivations and the absence of extensive

training may also prevent adaptation, thus allowing for general-

ization patterns to emerge in individuals with ASD. In addition,

it is conceivable that similar to ‘‘fast learning’’ mechanisms that

are engaged in initial training,6,37 memory reactivations may

enable ASD participants to learn general aspects of the task,

possibly by engaging higher-order regions that communicate

with early visual areas that encode the task.38 In turn, this may

facilitate generalization of learning, which is absent in extensive

training conditions,15,39 showing high specificity to trained stim-

ulus features16,40–45 (but see single condition in Harris et al.4).

The relation between these mechanisms and reactivation-

induced learning in ASD remains to be determined. There are

several limitations associated with the current study. First is its

focus on a model perceptual learning task. Second, the current

study shows both ASD learning and generalization following re-

activations, andminimal ASD learning and generalization without

reactivations. Insights regarding the conditions of standard

extensive ASD perceptual learning and lack of efficient general-

ization were based on previous experiments with the same task

and similar cohort of ASD subjects.4 Third, the study would have

further benefited from additional replications of all groups and

conditions. In order to better substantiate and understand reac-

tivation-induced learning in ASD, it would be of interest to repli-

cate and explore in future studies additional visual tasks and

learning modalities.

In sum, the results provide proof-of-concept evidence sup-

porting a distinct route for efficient learning and generalization

in ASD, which may have further benefits for skill learning in other

sensory and motor domains where individuals with ASD exhibit

difficulties. These results may, therefore, have important clinical

utility in a variety of educational and behavioral intervention

contexts.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

29 subjects participated in the first experiment, 17 diagnosed with ASD (two females, average age 28.8 years, SD=9.9 years), and 12

aged matchedmale NT controls (average age 27.0 years, SD=4.0 years). 14 subjects diagnosed with ASD participated in the second

experiment (three females, average age 28.2 years, SD=10.4 years). The experiments were approved by the Ben Gurion University

and Tel Aviv University Institutional Ethics Committees. All subjects were healthy, did not report any genetic or metabolic disorders

and had no history of traumatic brain injury or seizures. All participants had normal or corrected to normal vision, were not video

gamers, did not participate in other visual experiments during the current experiment period and reported at least 6 hr of sleep

the night before each experimental session.

One ASD subject in exp1 and two in exp2 did not meet the initial practice inclusion criteria (see below). Three ASDs and two NTs in

exp1, and two ASDs in exp2, performed repeated mistyping errors and did not maintain fixation, which prevented reliable measure-

ment of their peripheral discrimination thresholds. As for the peripheral target, outlier analysis did not identify extreme values in base-

line performance or learning gains. Accordingly, 23 subjects in exp1 (13 ASD) and 10 in exp2 completed all sessions. Three ASDs in

exp1 and two in exp2 were not included in the generalization analyses and comparisons to other sessions due to repeated mistyping

errors and extreme46 generalization scores outside the range of 1.5*IQR (inter quartile range).

All participating ASD subjects provided proof of a formal diagnosis of autism that were performed by both a clinical psychologist

and a psychiatrist or neurologist according to DSM-IV-TR47 or DSM-518 criteria. All ASD subjects were high-functioning adults with

no indications of significant intellectual deviations from the general population and were not required legal guardianship. In addition,

ASD symptom severity was assessed with the AutismQuotient (AQ)48 that measures autistic traits (first experiment: mean ASD score

25.3±2.8, range 15-44; NT 12.3±1.6, range 1-19; groups significantly different (Mann-Whitney U-test, p<0.001); second experiment:

32.60±2.38, range 21-43).

METHOD DETAILS

Stimuli and task
All participants performed a modified version of the well-characterized visual discrimination task that was previously used for testing

ASD subjects.4 In each trial, a target frame (40ms) was followed by a patternedmask (100ms; Figure 1A). Participants were asked to

discriminate whether a target stimulus, consisting of three diagonal bars, was horizontal or vertical. The target stimulus was always

presented at the same peripheral location (at the lower right quadrant of the visual field at 5.71�), and embedded in a background of

horizontal bars (19 3 19, 0.58� 3 0.04� each, spaced 0.82� apart with 0.04� jitter). Fixation was enforced by a forced-choice letter

discrimination task (‘‘L’’ or ‘‘T’’ at the center of the display) with auditory feedback for errors. Display size was 15.6� 3 15.1� (viewed

from 100 cm away on a 20-inch CRT HP p1230monitor, refresh rate 100 Hz, mean texture luminance 80.2 cd/m2). The subjects were

requested to respond as accurately as they can to both texture and letter discrimination tasks. The intervals between the target and
e1 Current Biology 32, 3203–3209.e1–e3, July 25, 2022
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themask stimuli (stimulus onset asynchrony [SOA], measured from the onset of the target to the onset of themask) ranged from 40 to

800ms (40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 260, 300, 400, 500, 700 and 800ms). To assure similar exposures to the range of

SOAs along the experiment, each session consisted of nine blocks, with two trials per SOA that appeared continuously and in random

order within each block (for a total of 288 trials over nine blocks). Each trial was self-initiated by the observer, resulting in�2-s intertrial

interval. To familiarize the subjects with the task, each subject performed three training phases with pre-defined criterions. First, sub-

jects performed blocks of 10 non-masked trials, repeatedly until reaching 100% correct responses for both targets. Afterwards, pre-

training blocks of 10 trials at 800 ms SOA were repeated until subjects reached 90% correct responses (a maximum of 10 blocks,

after which subjects who did not reach the criterion did not participate in the experiment). Pretraining blocks were followed by a short

familiarization block of a single trial per each SOA.

Experimental design
To test whether reactivation learning would facilitate visual skill performance in ASD individuals, we employed a reactivation-learning

protocol8 using a well-established visual discrimination task12,17 in both neurotypical and ASD individuals (experiment 1, Figure 1B).

On the first day, all subjects practiced and then completed a full test session of the modified TDT, to encode the skill and determine

the visual threshold. On the following three sessions, subjects came for short memory reactivations (only five reminder trials per ses-

sion). All reactivation trials were constant at 400 ms SOA, which was much higher than all individual visual thresholds. Then, to test if

the reactivation sessions facilitated visual thresholds, all participants performed a full session again (i.e., retest session). Lastly, to test

if performance was generalized across retinotopic locations, participants performed a full session at a new peripheral position (i.e.,

generalization session). Prior to the generalization session, subjects were verbally instructed to perform the same task. Similar to the

original reactivation protocol,8 every two consecutive sessions were separated by two days, to stabilize memory processes. Partic-

ipants in both ASD and NT groups underwent the same procedure.

In the second experiment, we testedwhether learning and generalization effects could emergewithoutmemory reactivations. Sub-

jects underwent the same experimental procedure, with equally spaced test, retest and generalization sessions, but without memory

reactivations in between sessions.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data analysis
The perceptual visual threshold of the texture discrimination task (horizontal/vertical) was measured for each session using a stan-

dard Weibull fit for a psychometric curve derived from the nine experimental blocks, with slope b and finger error (mistyping) param-

eter 1 – p, yielding the function:49
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where T is the threshold for each curve, defined as the minimal time between the target onset and mask (SOA) for which 81.6% of

responses were correct. To estimate the goodness of fit of theWeibull function, R-square was calculated for each individual curve. In

the first experiment, R-square values were high for ASD subjects along the test (mean R-square: 0.82±0.04), retest (0.88±0.03) and

generalization (0.87±0.03) sessions. Similarly, high R-square values were also observed for NT subjects in the test (0.89±0.02), retest

(0.90±0.02) and generalization (0.89±0.02) sessions. In the second experiment, R-square values for ASD subjects were high across

test (0.83±0.03), retest (0.81±0.05) and generalization (0.81±0.03) as well (for illustration of group-level psychometric curves and

goodness of fit assessments – see Figure S1 in the Supplemental Information). One ASD subject in the second experiment demon-

strated unexpected low performance in the four longest SOAs, a difficulty which was also reported by the subject during the exper-

imental session and prevented a reliable estimation of the Weibull fit. Accordingly, the calculation of the baseline test threshold was

conducted without the four longest SOAs.

Reliability of baseline visual thresholds: In line with previous studies of the texture discrimination task,7,8,25,50 the visual thresholds

were extracted over all trials within a session. To further investigate potential effects of initial within-session learning, we recalculated

the visual thresholds without the first couple of blocks in which subjects might demonstrate poorer performance. This resulted in a

Weibull fit based on the last 7-blocks of each session. The results show that the 7-blocks thresholds were highly similar to the original

thresholds (Experiment 1: ASD: 136.8±10.7 ms and 140.4±10.2 ms, NT: 110.9±9.5 ms and 109.4±9.5 ms; Experiment 2:

153.4±17.6 ms and mean=154.6±17.1 ms), indicating that the baseline threshold reliably reflected performance in the session.

Statistical analysis
Perceptual thresholds were extracted for each session separately. Non-parametric testes were used to avoid influences of extreme

values. Non-parametric Wilcoxon signed-rank tests for paired samples were performed to evaluate within-subject–level changes in

performance. To compare the magnitude of learning and generalization percentage between groups, the individual thresholds at

each session were normalized to the test baseline session. Additionally, the between-groups analyses were also conducted on

the absolute difference in threshold (in ms). Differences between groups were evaluated via non-parametric Mann-Whitney tests.

Adjustments for multiple comparisons in each experiment were conducted with Holm-Bonfferoni correction.51 Between-session
Current Biology 32, 3203–3209.e1–e3, July 25, 2022 e2
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comparisons were performed when data existed across sessions, thus using statistical analyses of paired samples. To control for the

effect of baseline test thresholds on the differences in learning and generalization gains between groups, a non-parametric analysis of

covariance (ANCOVA on ranks) was conducted with baseline ranks as covariate. A complementary repeated-measures mixed

models ANOVA on ranks was conducted to verify the interaction between group (NT/ASD) and session (test/retest/generalization)

factors in the first experiment.
e3 Current Biology 32, 3203–3209.e1–e3, July 25, 2022
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